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International Mathematical Olympiad 

Preliminary Selection Contest 2012 — Hong Kong 

 

Outline of Solutions 

 

Answers: 

1. 170 2. 104 3. 
7

13
 4. 6 

5. 192 6. 1998 7. 11 8. 86 6   

9. 55440 10. 
49

58
 11. 18 12. 

11 37

3


 

13. 3 14. 673685 15. 6 16. 
11

2
 

17. 6 35  18. 82944 19. 8221 20. 8 

 

Solutions: 

 

1. Since n is a two-digit number, we have 2 299 9801 9999n     and so the sum of digits of 2n  

is less than 9 4 36  . Since the sum of digits of 2n  is equal to the square of the sum of digits 

of n , the sum of digits of n  is less than 36 6 . It remains to search through all the two-digit 

numbers whose sum of digits not greater than 5. There are 15 such numbers, namely, 10, 11, 

12, 13, 14, 20, 21, 22, 23, 30, 31, 32, 40, 41, 50. By checking these numbers one by one, we 

know that the answer is 10 11 12 13 20 21 22 30 31 170         . 

 

2. Note that 2 1 ( 1)( 1)n n n    . We thus want one of 1n  and 1n  to be a prime and the other 

to be a product of two primes. All of these primes have to be odd since 1n  and 1n  have the 

same parity and there exists only one even prime.  

Call a positive integer a ‘semiprime’ if it is the product of two distinct odd primes. The first 

five ‘semiprimes’ are thus 15, 21, 33, 35, 39. We need to look for small primes which differ 

from a ‘semiprime’ by 2. We thus, get (13, 15), (15, 17), (19, 21), (21, 23) and (31, 33) as the 

five smallest sets of ( 1n , 1n ). Therefore, the five smallest ‘good’ integers are 14, 16, 20, 

22 and 32. Summing them up, we get the answer 104. 
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3. The probability that the monitor can choose his favourite seat depends on his position in the 

queue. If he is first in the queue, he must be able to get his favourite seat; if he is the second in 

the queue, there is a probability of 
12

13
 that his favourite seat has not been chosen by the first 

person in the queue. Similarly, if he is k-th in the queue, the probability that he gets his 

favourite seat is 
14

13

k
. Since the monitor is equally likely to occupy each position in the 

queue, the answer is 
1 12 11 1 7

1
13 13 13 13 13

 
     

 
. 

 

4. Since a positive integer leaves the same remainder as its sum of digits when divided by 9, 

( )D x  is simply the remainder when x is divided by 9. In other words, the answer is simply the 

remainder when 2012F  (where nF  is the n-th Fibonacci number) is divided by 9. 

We compute the ‘modulo 9 Fibonacci sequence’ (i.e. the remainders when terms of the 

Fibonacci sequence are divided by 9): we get 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 

2, 8, 1, 9, after which the next two terms are 1, 1 and hence the sequence will repeat every 24 

terms. Since 2012 20  (mod 24), we have 2012 20 6F F   (mod 9). 

 

5. Let ib  and ig  (where 1 5i  ) be the number of boys and girls in the i-th class respectively. 

Since there are 600 5 120   students in each class and at least 33 boys and girls, each ib  and 

ig  is between 33 and 87 inclusive. Consider the matrix: 

1 2 3 4 5

1 2 3 4 5

b b b b b

g g g g g

 
 
 

 

The sum of each row is 300, while the sum of each column is 120. If we circle the smaller 

number in each column, the sum of the circled numbers is the number of teams which can be 

formed. 

By the pigeonhole principle, at least three numbers are circled in the same row. Without loss of 

generality assume 1b , 2b  and 3b  are circled. Note that 1 2 3 300 2 87 126b b b      . On the 

other hand, each circled number in the fourth and fifth column is at least 33. The sum of the 

circled numbers is thus at least 126 33 33 192   . Equality is possible as the matrix 

42 42 42 87 87

78 78 78 33 33

 
 
 

 

provides one such example. The answer is thus 192. 
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6. Note that  
3

3 28 3 2 6 2 2 2x x x x      . It follows that 2 2x   , or 2( 2) 2x  , or 

2 4 2 0x x   . Thus 5 2 2 3 241 2012 ( 4 2)( 4 14 7) 1998 1998x x x x x x x          . 

 

7. Call a positive integer ‘good’ if it can be expressed in the form 
2 2

2 2

a b

c d




 where a, b, c, d are 

non-negative integers. Clearly, if n is ‘good’, then so is 2n because we can simply increase a 

and b by 1 to double the value of 
2 2

2 2

a b

c d




. 

Note that 1, 3, 5, 7, 9 are ‘good’ since 
2 1

2 1

2 2
1

2 2





, 

3 1

2 1

2 2
3

2 2





, 

4 1

2 0

2 2
5

2 2





, 

4 1

2 1

2 2
7

2 2





 and 

6 0

3 0

2 2
9

2 2





. Hence 2, 4, 6, 8, 10 are also ‘good’ by the remark in the previous paragraph. 

Finally, assume 
2 2 2 (2 1)

11
2 2 2 1

a b k m

c d n

 
 

 
 where m a b  , n c d   and k b d  , with m, n 

positive. It follows that 11(2 1) 2 (2 1)n k m   . Since the left hand side is odd, we have 0k  . 

Clearly, neither m nor n can be equal to 1. Thus 2 1 2 1 3m n     (mod 4). As 11 3  (mod 4), 

we get a contradiction as the left hand side is congruent to 1 but the right hand side is 

congruent to 3 modulo 4. Thus 11 is not ‘good’ and so the answer is 11. 

 

8. By completing square we have 2( ) ( 6) 6f x x    and so 

2 2 4( ( )) ((( 6) 6) 6) 6 ( 6) 6f f x x x        . 

Similarly, 8( ( ( ))) ( 6) 6f f f x x   . The equation thus becomes 8( 6) 6x  , with solutions 
86 6x    . Hence the answer is 86 6  . 

 

9.  Ignoring the rule that no two adjacent letters be the same, the answer would be 
9!

2!2!
 as there 

are 9 letters including two I’s and two L’s. From this we must count the number of 

permutations with two adjacent I’s or two adjacent L’s. 

If the two I’s are adjacent, we can treat them as one single letter and hence the number of 

permutations would be 
8!

2!
. The same is true for permutations with two adjacent L’s. There are 

overlappings between these two types of permutations though, as there are 7! permutations in 

which the two I’s and the two L’s are both adjacent. Hence the answer is 

9! 8 8
7! 55440

2! 2! 2! 2!

 
    

  
. 
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10.  From the given equations we have 2 24sin 36sinx y  and 2 24cos cosx y . It follows that 

2 2 2 2 2 24 4sin 4cos 36sin cos 36sin (1 sin )x x y y y y        

and so 2 3
sin

35
y  . In the same way we get 2 27

sin
35

x  , 2 8
cos

35
x   and 2 32

cos
35

y  . Hence 

2 2

2 2

8 27

sin 2 cos 2 2sin cos cos sin 1 4935 352(3)
32 3sin 2 cos 2 2sin cos cos sin 2 58

35 35

x x x x x x

y y y y y y


  

      
   

. 

 

11. Let d be the last digit of x, and write 10x c d  . After moving the last digit to the front, the 

number becomes 110n d c  . According to the question, we have 110 2(10 )n d c c d    , or 
1(10 2) 19n d c   . Computing 10k  modulo 19 for k = 1, 2, 3, …, we get 10, 5, 12, 6, 3, 11, 15, 

17, 18, 9, 14, 7, 13, 16, 8, 4, 2. Hence the smallest possible value of 1n  is 17. It remains to 

show that there is a 18-digit number with the given property. Since c is to be a 17-digit number, 

from 1(10 2) 19n d c   , we see that we should set 2d   when 18n  . This corresponds to 

10526315789473684c   (hence 105263157894736842x  ). It follows that the answer is 18. 

 

12. Since 1 2 1 2 1 2A A B B C C  , the circle has the same centre 

as the inscribed circle of ABC. If we let 0A  be the mid-

point of 1 2A A , then 0A  is the point where the inscribed 

circle of ABC touches BC, and the same as true for 0B  

and 0C . Since 0 0AB AC , 0 0BC BA  and 0 0CA CB , 

it is easy to find that 0 0 2AB AC  , 0 0 1BC BA   and 

0 0 3CA CB  . Thus we have 2 1 2
2

x
AB AC   , 

2 1 1
2

x
BC BA    and 2 1 3

2

x
CA CB   . 

The area of 2 1BC A  is thus 

2
1

1
2 2

x 
 

 
. As 

4
sin

5
A  , the area of 2 1AB C  is 

2
1 4

2
2 2 5

x   
   

   
. 

Similarly, 2 1CA B  has area 

2
1 3

3
2 2 5

x   
   

   
. Finally, since the area of ABC is 6, we have  

2 2 2
1 1 4 1 3

1 2 3 2
2 2 2 2 5 2 2 5

x x x         
              

         
 

and hence 
11 37

3
x


 . Obviously the negative square root should be taken as 3x  . 

A 

B C A2 A1 

C2 

C1 

B2 

B1 
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13. Let OP meet AD at Q. Note that we have 

OB OC OP   and hence 90OPB PCB    . 

Since OPB QPD   and PCB PDQ   (as 

6PA PC PB PD    , which implies ABCD is 

concyclic), we have 90QPD PDQ    .  

This implies OQ is perpendicular to AD. Yet it is also 

given that OA is perpendicular to AD. Hence O must 

lie on the straight line APC. As O is the circumcentre 

of PBC , it follows that PC is a diameter of its 

circumcircle. Since 6PC  , the circumradius is 3. 

 

14. Let x be the common difference of the arithmetic sequence a, b, c, d. We have 3d a x  . The 

question is thus equivalent to counting the number of positive integer solutions to the equation 

( 3 ) 2013a x t   . 

When 1x  , the equation becomes 2010a t   and there are 2009 solutions (corresponding to 

a = 1, 2, …, 2009). When 2x  , the equation becomes 2007a t   and there are 2006 

solutions. Likewise, when x = 3, 4, 5, …, 669, 670, there are 2003, 2000, 1997, …, 5, 2 

solutions respectively. It follows that the answer is 

(2009 2)(670)
2009 2006 2 673685

2


     . 

 

15. Let the areas of the four triangles be n , 1n , 

2n  and 3n , where n is a positive integer. 

The area of the quadrilateral ABCD is thus 

4 6n . Note that the area of BCD  is four 

times that of ECF , which is at least 4n. Hence 

the area of ABD is at most 6. 

 

Equality can be attained when ABCD is an isosceles trapezium with parallel sides 6AD   and 

4BC  , and height 2. (We can check in this case that the areas of CEF, ABE, ADF and 

AEF are 1, 2, 3 and 4 respectively, and ABD has area 6). The answer is thus 6. 

 

 

A 

B 

C 

D 

P 

Q 

O 

A 

B C 

D 

E 

F 
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16. Extend CD to E  so that DE DC . Then BDE 

and BDC are congruent so that we have 

6BE BC   and BED BCD BAD   . It 

follows that A, D, B, E are concyclic and so 

90EAB EDB    . Thus 2 26 5 11AE     

and hence the mid-point theorem asserts that 

1 11

2 2
DM AE  . 

 

17. Let O be the mid-point of AB, which is also the 

circumcentre of ABC . Extend CP  to meet the 

circumcircle at D .  Note that P is between O and B (if P 

is between O and A then ACP is less than 45 while 

APC is obtuse, contradicting APC = 2ACP). 

Let ACP   . Then 2 2DPB APC ACP       

and 2AOD   .  It follows that DO DP , both being 

3.5 (radius of the circle). Using the power chord theorem 

PA PB PC PD   , we have (7 ) 1 3.5PA PA    . 

Solving, we get 
7 35

2
PA


 . The positive square root 

is taken as P is between O and B. It follows that 

7 35

2
PB


  and so the answer is 

7 35
6 35

7 35


 


. 

 

18. Note that, in order for the sum of any three adjacent integers after the rearrangement to be 

divisible by 3, any three adjacent integers must be pairwise different modulo 3. For the original 

positions of 1, 2, 3, there are 3! 6  possibilities to arrange three numbers taken modulo 3 (i.e. 

exactly one of these positions is to be occupied by a number divisible by 3, one by a number 

congruent to 1 modulo 3, etc.). The remaining numbers, taken modulo 3, are then fixed. (For 

example, if the three numbers occupying the original positions of 1, 2, 3 are 8, 9, 10, then the 

twelve numbers modulo 3 in clockwise order starting from the original position of 1 must be 2, 

0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1.) For each such ‘modulo 3’ arrangement, there are 4! 24  ways to 

arrange each of the 4 numbers congruent to 0, 1 and 2 modulo 3. Hence the answer is 

6 24 24 24 82944    . 

 

O 

A 

C 

D 

B 

P 

  

2  

2  

A 

B 
C 

D M 

E 
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19. As 100140001 is of the form 8 410 14 10 1   , we naturally try to factorise 8 414 1x x  . 

Indeed, we have 

8 4 8 4 4

4 2 4

4 2 2 4 4 4 2 4

4 2 2 2 4 2

4 2 2 3 2

4 3 2 4 3 2

14 1 2 1 12

( 1) 12

[( 1) 4 ( 1) 4 ] 8 4 ( 1)

( 2 1) 4 ( 2 1)

( 2 1) (2 2 )

( 2 2 2 1)( 2 2 2 1)

x x x x x

x x

x x x x x x x

x x x x x

x x x x

x x x x x x x x

     

  

       

     

    

        

. 

 By putting 10x  , we get 100140001 12181 8221  . Hence the answer is 8221. 

 

20. Let a, b, c (where a b c  ) be the lengths of the sides of such a triangle. By Heron’s formula, 

we have 

2( )
2 2 2 2

a b c a b c c a b b c a
a b c

           
      

    
, 

which simplifies to 

( )( )( ) 64( )a b c c a b b c a a b c         . 

Observe that a b c  , c a b  , b c a  , a b c   have the same parity and hence must be 

even. Set 2a b c r   , 2c a b s   , 2b c a t   , where r, s, t are positive integers with 

3 r s t   . The above equation is then reduced to 

16( )rst r s t   . 

As 3t r s t t    , we have 16 48rs  . Also, the above equation implies 
16( )

16

r s
t

rs





. 

Hence we need to find r and s so that 16 48rs   and 16rs   divides 16( )r s . We can then 

list out all such pairs of (r, s) and compute the corresponding t, getting 8 different solutions, 

namely, (r, s, t) = (3, 6, 72), (3, 7, 32), (3, 8, 22), (3, 12, 12), (4, 5, 36), (4, 6, 20), (4, 8, 12) and 

(6, 7, 8). Therefore there are 8 such triangles. 

 


